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PREFACE 

This work is part of an ongoing investigation of the behavior of pressurized structural 
elements under load with the ultimate objective of making possible the use of such elements 
in the support structure of Army tents. The work was funded under the In-House 
Laboratory Independent Research program as a work unit entitled, "Study of the Stability 
of Pressure-Stabilized Arches and their Structural Assemblies." In the reference citations 
the organizations "US Army Natick Laboratories" and "US Army Natick Development 
Center" refer to the organization now called the "US Army Natick Research and 
Development Command." 
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OPTIMUM DESIGN OF PRESSURE STABILIZED BEAMS 

INTRODUCTION 

Over the past several years the pressurized rib concept for tent support structures 
has been under development for use in Army field tentage. The pressurized rib concept 
which is illustrated in Figure 1 consists of a frame of pressure-stabilized beams and arches 
covered by a lightweight fabric environmental barrier. This concept differs from the more 
familiar double-wall air-supported tents in that there are fewer pressure-stabilized structural 
elements, and those used have a smaller cross-section, thus reducing the weight of the 
support structure. This reduction in size and number of structural elements is made possible 
by increasing the inflation pressure level. In present double-wall shelters, pressures on 
the order of 5 kPa are used, while it is anticipated that pressures in the range 200 to 
500 kPa will be used with the pressurized rib concept. In addition to the weight reduction 
possible, it is also believed that the concept will achieve reductions in the packaged bulk 
because the structural elements are made from flexible materials such as fabrics so they 
can be compactly folded when not inflated. While having these advantages over present 
tentage it retains the rapid erection and striking characteristics of all air-supported 
structures. It is also anticipated that the pressurized rib concept can be fabricated with 
sufficient air retention capability to eliminate the need for the dedicated air supply required 
of current air-supported tents. Several years ago a systems analysis of the Army's shelter 
requirements found that the pressurized rib concept showed great promise for meeting 
the Army's tentage needs. It was this result that initiated the study of the concept. 
A recent study, reference 1, evaluated a number of tent support structure concepts with 
regard to mobility, habitability and cost, and found the pressurized rib concept as one 
of the most promising, thus establishing its logistical feasibility. The technical feasibility 
of the concept was established by the results presented in reference 2. This study clearly 
established the possibility of making inherently stable frame assemblies using 
pressure-stabilized arches and beams and demonstrated that such frames could withstand 
the Army operational snow load within the pressure range anticipated for use with the 
concept. The major emphasis of the work completed to date was the development of 
a design capability for pressure stabilized beams and arches and for tent structures using 

1 Arthur Johnson; Comparative Evaluation of Concepts for Modular Tentage; US Army 
Natick Research & Development Command, Technical Report NATICK/TR-78/009, 1978 
(AD A055347) 

2 Earl C. Steeves; Fabrication and Testing of Pressurized Rib Tents; US Army Natick 
Research & Development Command, Technical Report NATICK/TR-79/008 
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FABRIC BARRIER 

Figure 1. Tent Concept Using Pressure Stabilized Structural Elements 
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the pressurized rib concept. The work on the beams and arches is presented in references 3, 
4, and 5 and provides a theory for the prediction of the deformation and load·carrying 
capability of these structural elements as a function of the element size, pressure level, 
and material properties. Also included in these reports are experimental results that confirm 
the accuracy of the theoretical predictions. To provide a design capability for complete 
tents using the pressurized rib concept, a finite element for pressure stabilized beams was 
developed and reported in reference 6. The finite element was adapted to a finite element 
computer code for the analysis of frame-supported tents. 

We thus have adequate analysis capability, but as this capability was used, it became 
apparent that the tent designer needed some help with synthesis type of questions: Should 
higher pressure level and smaller cross-section sizes be used, do high or low stiffness material 
give the better structure? To give an answer to these questions, an optimum design study 
was undertaken using structure weight as the objective function to be minimized or 
optimized. The objective of this report is to describe this study of the minimum weight 
design of a pressure-stabilized beam under a uniform load. The beam weight is minimized 
as a function of inflation pressure level, cross-section radius, and fabric weight density. 
These results are used to infer the influence of fabric stiffness on weight minimization. 

ANALYSIS 

Problem Formulation 

The problem is stated in two parts; the objective function and the constraints, with 
the beam weight as the objective function. Both the objective function and the constraints 
are expressed in terms of the independent variables, pressure, cross-section radius, and 
the mat~rial area density (p, a, d). The structural element considered is a uniformly 

3 Earl C. Steeves; A linear Analysis of the Deformation of Pressure-Stabilized Beams; 
US Army Natick laboratories, Technical Report 75-47-AMEL, 1975 (AD A006493) 

4 Earl C Steeves; Behavior of Pressure Stabilized Beams Under Load, US Army Natick 
Development Center, Technical Report 75-82-AMEL, 1975 (AD A010702) 

5 Earl C. Steeves; The Structural Behavior of Pressure-Stabilized Arches, US Army Natick 
Research & Development Command, Technical Report NATICK/TR-78/018; 1978 
(AD A063263) 

6 Earl C. Steeves; Pressure Stabilized Beam Finite Element, US Army Natick Research & 
Development Command, Technical Report NATICK/TR-79/002; 1978 (AD A064732) 
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loaded, simply supported beam of length 2L, and using the notation shown in Figure 2, 
the weight, W, of the beam is given as 

W = 4rrald ( 1) 

This is the function to be minimized, subject to the constraints that the wrinkling load 
failure criterion be satisfied and that the fabric not rupture. We now proceed to express 
these constraints mathematically in terms of the independent variables, pressure, radius 
and fabric density (p, a, d). The wrinkling load failure criterion which is discussed in 
reference 3 assures that the design is chosen so that the applied load can be supported 
and requires that the absolute value of the compressive bending stress, Nx, be less than 
the axial stress due to pressurization. This is expressed mathematically as 

pa ;;,. 2Nx (2) 

We find from reference 3 that for the case of a simply supported beam under a uniform 
load the absolute value of the maximum compressive stress due to bending is, in dimensional 
form: 

2CII f 
Nx = (1 -Cosh ,(AL))/Cosh(AL) 

rrap 
(3) 

where C11 is the fabric stiffness and A is the characteristic number associated with the 
differential equation governing this problem and is defined in reference 3. Equation (3) 
is obtained by evaluating Nx at the beam midpoint. The characteristic number, A, in 
(3) is a function of the pressure, the cross-section radius and the material properties and 
for the values of these parameters of interest we find that AL >> 1. Under this condition 
the following simplifying assumption can be made with good accuracy 

1 -Cosh (ALl 
Cosh (AL) 

~ 1 

and the absolute value of the maximum compressive stress is taken to be 

Nx = ..,2-"'C"-' Ld'-
rrap 

(4) 

(5) 

In (5) the parameter f is the intensity of the applied load. The wrinkling load constraint 
then becomes, by substitution of (5) into (2) 

pa;;,.~ (6) 
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d - FABRIC AREA WEIGHT DENSITY 

Figure 2. Sketch of beam and nomenclature 
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To complete the formulation of this constraint we observe that the fabric stiffness, C11 , 

is a function of the mass density. That is, the heavier fabrics are stiffer than the lighter 
ones. This relationship must be put in mathematical form and for lack of more precise 
information we chose the linear form 

(7) 

with the constants r3 and r4 to be determined from fabric data. Substituting this into 
(6) the wrinkling load failure constraint becomes 

I'?- 1M- I pal:; rr (r3 d- r4 ) (8) 

which is the form to be used in this analysis. The second constraint which assures that 
the fabric will not rupture under the pressure loading is expressed mathematically as 

(9) 

where Nb is the fabric breaking strength and pa is the circumferential stress resulting 
from internal pressure loading. In this analysis we are assuming that the fabric breaking 
strength is the same in both directions and therefore (9) is the only fabric strength 
constraint required. This is so because axial stress due to pressurization is one half of 
the circumferential stress, and if the wrinkling load failure criterion (2) is satisfied, then 
the maximum tensile axial stress, the sum of that due to pressure and bending, is less 
than the fabric breaking strength. The fabric breaking strength is also dependent on fabric 
mass density, and we chose the following linear function to represent this dependence 

(1 0) 

and the fabric breaking strength constraint (9) becomes 

( 11 ) 

For completely practical reasons we add two constraints, one that keeps the inflation 
pressure below some maximum and one that keeps the cross-section radius above some 
minimum. These are written as 

P.;;;; Pitt 
(12) 
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The limit on the pressure is thought necessary because of available pressure supplies in 
the field and the radius limit is necessary because manufacturing techniques will probably 
have such a limit. This completes the formulation of the problem which we summarize 
here. Find p, a and d to minimize 

W; 4rraLd (13) 

subject to the constraints 

(14) 

P .;;; Pm 

Solution 

A solution to the problem stated as equations (13) and (14) is the values of p, a, 
and d which minimizes the function W and satisfy the constraints for specified values 
of beam length, load, minimum radius, and maximum pressure denoted respectively as 
L, f, a 0 and Pm· In addition, the parameters r1 , r2 , r3 , and r4 specifying the relations 
between the fabric density and its strength and stiffness must be specified. The values 
used for the q in what follows were obtained by fitting curves to experimental data as 
discussed in the appendix. 

To obtain a solution, we begin by noting that the wrinkling load and fabric rupture 
constraints can be written as functions of two variables, d and pa, if the product pa 
is treated as a single variable. Considering a beam of length 2 L ; 5 m and loaded with 
a force intensity 3000 N/m, we have plotted the two constraint boundaries in Figure 3 
as a function of the two variables d and pa. The region of allowable designs in the 
d, pa space is indicated by the crosshatched area on Figure 3. In this form, however, 
there is no information about the weight. For a fixed value of pressure, the plot in 
Figure 3 may be viewed as a plot in the coordinates density and radius. Since the weight 
is a function of only these two coordinates we can plot lines of constant weight on such 
a plot. This is done in Figure 4 where plots corresponding to that in Figure 3 for four 
different pressures are given. On these plots in Figure 4 in addition to the constraints 
are plots of the curves of constant weight for three values of the weight. Examination 
of the plots in Figure 4 reveals two facts: As the pressure increases, designs with reduced 
weight are brought into the design region and the lowest weight design that satisfies the 
constraint will be at the intersection of the fabric rupture and wrinkling load constraint. 
Returning now to the problem in the coordinates pa and d we can find this design point 
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by solving the equation for the constraint boundaries 

pa = r1 d - r2 

pa = 4f (r3d- r.) 
11 

( 15) 

to obtain 

d = d (16) 

pa = A ( 17) 

In (16) and (17) d and A are the magnitudes of the density and the pressure-radius product 
of the minimum weight beam. It remains only to find expressions for the pressure and 
the radius from (17) and the remaining constraints on the radius and pressure. We have 
thus reduced the problem from that stated in (13) and (14) to the following. Find p 
and a such that 

pa =A 

P < Pm (18) 

To obtain the solution of this reduced problem we must consider the two cases shown 
in Figure 5. In both of these plots the allowable design region is to the right of the 
line a = a0 and below the line p = -i',-m· Thus in case 1 the solution will be the intersection 
of the line a = a

0 
and pa = A giving- -- --

/ a /,, 
( 19) 

p = A/a0 

Similarly for case 2, the solution will be the intersection of the line p = Pm and pa = A 
giving 

P = Pm 

This completes the solution with the minimum weight design being given by the solution 
of (15) and either (19) or (20) to give the values of the cross-section radius, pressure 
and fabric density corresponding to the minimum weight. 
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DISCUSSION 

Our purpose here is not to present numerical results giving the minimum weight designs 
for various parameters but to discuss the general character of the solution. In this regard 
we will look at the direct effect on minimum weight design of the primary variables, 
radius, pressure, and fabric density and some inferred results concerning the fabric stiffness 
and strength characteristics. 

Making reference again to Figure 3 and recalling that the design point is at the 
intersection of the constraint boundaries, it is clear that the minimum weight design 
corresponds, not surprisingly, to the smallest value of the fabric density within the design 
region. To see the effect on minimum weight design of the pressure, we examine Figure 4 
and find that if the pressure increases, designs having lower weights are brought into the 
design region. Thus, minimum weight design requires the use of higher pressures, and 
since at the design point pa = A, where A is a constant, the use of higher pressures 
requires the use of smaller cross-section. However, there is an upper constraint on the 
pressure and lower constraint on the cross-section radius, and one of these constraints 
sets the final magnitude of these variables. Thus, we find the minimum weight is obtained 
by using fabrics of low density and beams having small cross-section radii and large inflation 
pressures. It should also be noted that the minimum weight design lies at an intersection 
of the constraint boundaries, a situation very similar to that occurring in linear programing 
where the solution always occurs at an intersection of the constraints. 

Turning now to the effect of fabric strength and stiffness on the minimum weight 
design, we note on Figure 4 that lower weight is achieved by moving the design point, 
the intersection of the constraints, to the left. Referring to Figure 3, it can be seen 
that this can be accomplished by increasing the slope of the fabric failure constraint and 
decreasing the local slope of the wrinkling load constraint. The slope of the fabric rupture 
constraint can be increased by increasing the magnitude of the parameter r1 , which is 
the rate of increase of strength with weight. Thus, fabrics which have the highest rates 
of increase in strength with weight should be favored if minimum weight is desired. 
Similarly, the wrinkling constraint local slope can be decreased by decreasing the magnitude 
of the parameter r3 which is the rate of change of stiffness with weight. Thus, for minimum 
weight design, fabrics having lower stiffness are favored. 

One small difficulty with the analysis should be pointed out, and this concerns the 
wrinkling load constraint. It will be noticed that in this constraint an imaginary solution 
results when r3 d < r4 and such a result makes no sense. The difficulty is not fundamental 
with the wrinkling load criterion but rather with the modelling of the fabric stiffness 
as a function of fabric weight for very small weights. For the data given in the appendix, 
this difficulty occurs at a density of 0.0015 kg/m2 which is way below the range of 
interest. Thus, although the difficulty is theoretically present, it is of no real concern 
in actual physical problems. This all points out the need for a more comprehensive data 
base for the strength and stiffness of fabrics which can be used to generate a more realistic 
and accurate model of these parameters as a function of weight. 
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CONCLUSIONS 

A study of the m1n1mum weight design of pressure-stabilized beams has been 
completed. The minimization was done subject to four inequality constraints and yielded 
the inflation pressure, cross-section radius, and fabric density corresponding to the 
minimum weight design. The solution of this problem reveals that minimum weight is 
obtained with large values of inflation pressure, small values of cross-section radius and, 
not surprisingly, low values of fabric density. From this solution it is shown that fabrics 
of high strength and low stiffness per unit density favor minimum weight. 
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APPENDIX 

Determination of Constants Representing the Fabric 
Strength and Stiffness as a Function of its Density 

In the body of the report we used the following linear representations of the fabric 
strength, Nb, and stiffness, C11 , in terms of its area mass density, d. 

It is our purpose here to obtain magnitudes for the parameters q, i = 1 through 4. This 
is accomplished by fitting curves to experimental data from three nylon fabrics, two very 
light fabrics and one heavy fabric. These data are given in the table followed by the 
parameter values obtained by a least squares fit of the data. 

Density Breaking Strength Stiffness 
(kg/m2) N/m N/m 

0.041 8,76 X 103 53.8 X 103 

0.041 4.55 24.9 

0.034 8.06 53.8 

0.034 8.06 41.2 

0.494 126.00 737.0 

0.494 131.00 933.0 

rl = 2.65 X 105 r3 17.4 X 1QS 

r2 = 2.58 X 103 r4 = 27.0 X 103 
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SYMBOLS 

a constant defined by equation (17) 

cross-section radius 

minimum allowable radius 

fabric stiffness 

fabric mass density 

applied load intensity 

beam half length 

fabric breaking strength 

axial stress resultant 

inflation pressure 

maximum allowable inflation pressure 

parameters relating fabric strength and density 

parameters relating fabric stiffness and density 

beam weight 

characteristic number 
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